
How to approach energy efficiency projects: 
understanding the energy consumption 

patterns 

Prof. Gianfranco Chicco 
Energy Department, Power and Energy Systems Unit 

Politecnico di Torino, Torino, Italy 

© Copyright Gianfranco Chicco, 2016 

Presentation at Torino Lingotto 
16 May 2016 



Outline 
§  Treatment of the data gathered from individual consumers and their 

aggregations – load patterns and load duration curves 

§  Interactions among energy vectors in multi-generation applications 

§  Representation of residential load aggregations – probabilistic aspects 

§  Load pattern-based categorisation of electricity consumers – clustering 

applications 

§  Aggregation of loads with thermostatic control – load diversity, energy 

payback and cold load pickup  

§  Data representation with loads and local generation – net metering and 

effects of data averaging on the energy calculations 
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DATA  
 

GATHERING 
 
 

(power measurement, 
load patterns, 

load duration curve, 
utilization of the electrical energy) 
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Representation of the load in a specified 
period of analysis 

�  Load pattern: 
•  time evolution of the (active and/or reactive) power, determined by 

suitable measurements in a given analysis period (e.g., one month)  

•  but… power is an instantaneous quantity, thus it is not measurable 

•  the average power is determined by measuring an energy in a 

specified time interval (e.g., 15 minutes, 1 hour,...) and dividing by 
the duration of the time interval 

•  the maximum power value obtained in the analysis period is 

usually stored to be used for tariff purposes 
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Power measurement 
� (average) power evaluation in a specified time interval: 

•  load pattern obtained from energy measurements at regular rate 
(e.g., each quarter of hour)  

•  the power obtained is assumed to be constant for the whole time 
interval to which it is referred 

•  the lower the rate, the better the representation of the actual evolution 
of the instantaneous power demand 

•  however, very fast rates use huge amount of memory and are not 
always necessary  
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Load duration curve 

�  Load Duration Curve (LDC): 

•  built starting from the load pattern by reordering the average power 

values in the descending order 

•  for each power value, it represents the duration for which the 

power has been reached or exceeded 

•  over the peak power the duration is null 

•  the duration for the minimum power is the whole analysis period 
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Annual load pattern 
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Annual Load Duration Curve 
(Spain, 2003) 
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Hourly load pattern 

0

5

10

15

20

25

30

35

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

ore

po
te

nz
a 

[G
W

]

hour 

power 

[GW] 

Understanding the energy consumption patterns © Copyright Gianfranco Chicco, 2016 



Hourly Load Duration Curve 
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Starting from a load pattern represented by a set of power values, the LDC 
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Probabilistic load model 
�  Cumulative Distribution Function (CDF) of the load: 

•  Obtained from the duration curve of the hourly load power (in 
discrete form) by exchanging the horizontal and vertical axes and 
substituting the values on the time axis with the relative duration 
referred to the total time interval of analysis 
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Cumulative curve (CDF) of the load power  
Spagna, anno 2003 
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vertical axis: probability that the power 
value indicated in the horizontal axis is 

reached or exceeded 



Probabilistic density function (PDF) 

�  Probability Density Function (PDF) of the load: 

•  Formally representing the derivative of the CDF with respect to the 

load power 

•  With CDF represented in discrete form, is formed by a number of 

Dirac pulses, each one located at a step of the CDF and with 

amplitude (area) equal to the one of the corresponding step 

•  If the duration curve of the hourly power is constructed on the 

basis of the hourly peak power values (with Nh steps), the PDF is 

composed of Nh equal size samples, each one of amplitude equal 

to 1/Nh  
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Probability density (PDF) of the load power 
Spagna, anno 2003 
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Data resolution 
�  A relevant aspect is the resolution with which the information is 

gathered and represented 

�  Two types of resolution can be identified, the combined effect of which 
determines the data representation effectiveness 

�  For time series data: 

Ø  vertical resolution: refers to the discretization step and depends 
on the number of digits/bits of the output 

Ø  horizontal resolution: refers to the time axis and depends on the 
data averaging time step 

§  increasing the averaging time steps make the patterns smoother 

§  however, in this smoothing process, information on relatively fast 
variations are not preserved 
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Utilization of the electrical energy 
•  The electricity tariffs are defined by using three terms 
•  Given the reference power P (kW), the energy consumption W (kWh) 

and the coefficients c0 [€], cP [€/kW] e cW [€/kWh], the amount of the 
tariff C is expressed as  C = c0 + cP P + cW W 

•  Putting into evidence the energy W, the tariffs can be represented on 
the amount/energy plane as 
  C = k0 + cW W 
 where k0 = c0 + cp P 

•  By dividing the two terms by P: 
  C’ = k + cW U 

•  The utilization U [hours/year] is defined as the ratio between the 
energy consumption W and the reference power P 

•  Practically, U represents the number of hours equivalent to a 
continuous use of the power P to provide the total energy W 

C [€] 

W [kWh/month] 

k0 
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Utilization of the electrical energy 

convenience         convenience                     convenience 
low utilization     medium utilization     high utilization 

C’ [€/kW] 

U [hours/month] U ’ U ” 

L 

M 
H 

•  The intersections between the lines determine the convenience regions 
•  Declaring the right utilization is convenient for both user and supplier  

Low (L), Medium (M) and High (H) utilization 
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MULTI-GENERATION  

 
APPLICATIONS 

 
 

(energy patterns, 
lambda analysis, 

impact of cooling equipment) 
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Cogeneration 
§  Simultaneous production of electricity and heat from one fuel source 

(cogeneration) may provide significant energy efficiency improvements 
with respect to separate production serving the same energy outputs 

§  Black-box model representation of CHP (Combined Heat and Power) 

§  Parameters: 
Ø  electrical efficiency 

Ø  thermal efficiency 

Ø  cogeneration ratio 
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P.Mancarella and G.Chicco, Distributed multi-generation systems: energy models and analyses (ISBN: 978-1-60456-688-8), Nova Science 
Publishers, New York, 2009.  

CHP 

F (fuel) W (electricity) 

Q (heat) 

λ =QW

ηW =W F
ηQ =

Q
F



Energy efficiency indicator:  
Primary Energy Saving (PES) 

n  Definition: 

n    electrical efficiency of the reference electricity production system 

n     thermal efficiency of the reference boiler 

n  Conventional evaluation of the energy saving for a cogenerator 
producing the same quantities of useful energy (electricity W  and heat 
Q) by using the fuel F, with respect to the separate production (SP) 
requiring FSP kWht of fuel 

n  The reference efficiency values are defined by the regulatory bodies 

PES = F
SP −F
FSP =1− F

W
ηe
SP +

Q
ηt
SP

convenient if 

PES > 0 

SP
eη
SP
tη
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Trigeneration efficiency 
§  Similar improvements for multi-generation applications 

§  Example for trigeneration (or Combined Heating Cooling and Power –
CHCP) serving electricity, heating and cooling loads 

§  Trigeneration Primary Energy Saving (TPES) 
 
 
 
 

 COPPS Coefficient of Performance of a chiller supplied by electricity (reference 
for separate production of cooling energy)  
 R useful cooling energy (kWhc) 
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TPES = F
PS −F
FPS =1− F

W
ηe
PS +

Q
ηt
PS +

R
ηe
PS COPPS

CHCP 
F (fuel) W (electricity) 

Q (heat) 
R (cooling) 

convenient if 

TPES > 0 

G.Chicco and P.Mancarella, Trigeneration Primary Energy Saving Evaluation for Energy Planning and Policy Development, Energy Policy, Vol.
35, No.12, 2007, pp. 6132–6144  



Trigeneration plant scheme 
§  Different cooling generation equipment can be used, supplied by either 

electricity or heat from the cogenerator, or directly by fuel 

§  The cooling production through different cooling generation equipment 
impacts on the “load” seen at the cogeneration side 
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G.Chicco and P.Mancarella, A unified model for energy and environmental performance assessment of natural gas-fueled poly-generation 
systems, Energy Conversion and Management, Vol. 49, No.8, August 2008, 2069-2077  
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Effect of using different cooling generators 
§  Electric chiller (supplied by electricity): electrical CHP load increase 

§  Absorption chiller (supplied by heat): thermal CHP load increase 

§  Refrigeration group supplied by gas: no CHP load increase 

§  Extension of the cogeneration ratio: introduction of a trigeneration 

demand-related cogeneration ratio, in which the thermal and electrical 

load include the corresponding effect of supplying the cooling demand 
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Case study example: hospital site 
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Impact of the cooling side 
§  Different impacts depending on how the chiller is supplied  
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CATEGORIZATION OF THE  
 

ELECTRICAL LOAD PATTERNS 
 

(consumer categories, 
individual and aggregate patterns, 
active and reactive power patterns, 

load profiles) 
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Macro-categories of users 
� Macro-categorization based on the energy use: 

•  residential users 
•  industrial users  
•  users of the tertiary sector 
•  other users (e.g., lighting, traction, etc.) 

�  Each user may exhibit a variable load pattern, depending on the 
type of use of the energy 

�  In several cases the distribution system does not supply each 
residential user individually, but supplies an aggregate load 

MV 

  LV 

= single load 

= aggregate load 
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Load aggregation 
�  For a residential area: 

•  the consumption may vary in function of the number of persons in 
the family, of the activity of the persons and of their lifestyle 

•  the characterization of the residential consumption by taking into 
account the possible load pattern of the electrical appliances would 
require a statistical analysis based on the various aspects affecting 
the energy use in the family 

•  fortunately, the aggregated  load pattern for a significant number of 
residential customers (e.g., 20-100) connected to the same feeder 
or substation can be forecast in a relatively easy way 

•  the different behavior of the single customers (families) leads to an 
overall daily evolution of the total load with some regularities 

� Other users: 
•  large industrial and tertiary users are supplied individually 
•  It is possible to define the load patterns for the single loads 
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Residential load patterns 

§  Detailed representation of the residential load patterns is a key issue for 
dealing with studies on electricity markets and distributed generation 

§  Drawing single-customer residential load patterns is difficult, because of: 
q  high dependence on non-electrical aspects (family composition, age, 

lifestyle...) 
q  irregular usage of the appliances  
q  presence of load pattern peaks of short duration, mainly dependent 

on a few high-power appliances 
§  The main interest is on aggregating the load patterns of residential 

customers, with some key questions: 
q  how load pattern uncertainty depends on the number of customers ? 
q  is load pattern uncertainty variable with the hour of the day ?  

E.Carpaneto and G.Chicco, Probabilistic characterisation of the aggregated residential load patterns, IET Generation, Transmission and 
Distribution , Vol. 2, No. 3, May 2008, 373–382 
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Individual and aggregate load patterns 
§  Typical load patterns with: 

q  single customer: large consumption peaks at poorly predictable time 
moments  

q  customer aggregation: relatively smooth consumption pattern, with 
“smoothness” depending on the number of customers 
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Aggregate residential load 

Composition           Number of users   reference power [kW] 
Residential load    80    237.5   
General services of the buildings    8      50   
Other       --       --   
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Aggregate residential load 

Composition    Number of users         reference power [kW] 
Residential load      80   237.5   
General services of the buildings     8     50   
Other          --      --   
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Analysis on extra-urban customers 

§  Analysis considering a number of customers (families) variable 

from 10 to 300  

§  3 kW reference (contract) power for every customer  

§  Specific results:  

q  variation of mean value and standard deviation of the 

aggregated demand for different numbers of customers 

q  ranges of variation of the load power for different time instants 

and for various numbers of customers 
A. Cagni, E. Carpaneto, G. Chicco and R. Napoli, Characterisation of the aggregated load patterns for extra-urban residential customer groups, 
Proc. IEEE Melecon 2004 , Dubrovnik, Croatia, May 12-15, 2004, Vol.3, pp. 951-954 
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Ranges of variation of the load power 
§  The relative ranges of variation highly depend on the number of 

customers N 

§  Low numbers of customers are related to higher uncertainties 

§  Results for extra-urban aggregate customers in a winter weekday  
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Evolution in time of the aggregate demand 
§  Time evolution (in minutes) of the aggregated demand for 150 houses 

and sampling interval of 1 min (100 Monte Carlo observations) 
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Cumulative Distribution Functions 
(CDFs) 

§  The CDFs quantitatively represent how the load power variation depends 
on hour and number of customers 

q  for a given hour, the mean value for different numbers of customers is 
nearly similar  
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Cumulative Distribution Functions 
(CDFs) 

q  For a given number of customers, the mean value and the standard 
deviation highly depend on the hour 
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Evolution of the standard deviation 
§  Quantitative evaluation of the evolution of the standard deviation w.r.t. 

time and number of customers 

q  standard deviations in per cent of the corresponding mean value 
q  lower values represent more easily predictable consumption during 

night (low consumption) and evening (high consumption) 
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Useful probability distributions 
§  Is it possible to represent aggregate load pattern data with a known 

probability distribution? 

§  Goodness-of-fit tests compare the empirical data to different probability 
distributions, e.g.: 

Ø  two one-parameter distributions (Exponential and Rayleigh) 

Ø  five two-parameter distributions (Gamma, Gumbel, Log-normal, Normal and 
Weibull), computing the two parameters on the basis of the average value 
and the standard deviation of the empirical data 

Ø  the three-parameter Beta distribution, with parameters a and b computed on 
the basis of the average value and the standard deviation of the data, and 
the third parameter c set to the maximum value of the data sample 

§  The Kolmogorov-Smirnov (KS) statistical test is used as an example 
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E.Carpaneto and G.Chicco, Probabilistic characterisation of the aggregated residential load patterns, IET Generation, Transmission and 
Distribution, Vol. 2, No. 3, May 2008, pp. 373–382  
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The KS statistical test 
§  The KS test is based on the calculation of the error ψ, given by the 

maximum vertical mismatch between the Empirical CDF (ECDF) 
obtained by the set of data under analysis and the CDF of the 
probability distribution under test 

§  The error ψ is compared to a critical value ψcrit 

§  The KS test is successful if ψ ≤ ψcrit 
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Results of the statistical tests 

§  KS test results generalised with various CDFs during the day 
§  The relative KS test error has been defined as the ratio between the 

observed value ψ and the critical value ψcrit of the KS test 
§  Relative KS test errors computed at every minute for 24 hours (1440 

time intervals for each CDF) with significance level 5% 
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Gumbel§  Zoom: hours 19:30÷20:30, 
winter working day (N = 20)  

§  Log-normal and Gamma 
CDFs exhibiting the best 
goodness-of-fit 

§  The relative KS test errors 
for Exponential and Rayleigh 
CDFs (not shown) are much 
higher  
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Results of the statistical test 

§  Attention focused on the Gamma probability distribution: 

q  defined only for positive values 

q  straightforward calculation of the Gamma parameters α = µ2/σ2 and   

β = σ2/µ  from mean value µ and standard deviation σ 

q  the simplicity of this calculation makes the Gamma probability 

distribution particularly interesting for representing the aggregate 
residential load  

( )
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Comments 

§  Residential load pattern characterisation requires a comprehensive 
approach with data gathering, validation and Monte Carlo simulation 

§  Quantitative evaluations of the time-dependent load power uncertainty 
for small numbers of residential customers is obtained 

§  The load power distribution at given time instants can be satisfactorily 
represented by a Gamma probability distribution with parameters easily 
computed from data mean value and standard deviation 

§  The results obtained are useful for probabilistic characterisation of 
residential customers in the evolving scenario of the electricity markets 
and in the presence of distributed generation 
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Industrial load 

reference power [kW]        rated voltage [kV]          utilization 
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Consumer of the tertiary sector 
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Consumer of the tertiary sector 

reference power [kW]      rated voltage [kV]         utilization 
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Consumer of the tertiary sector 

reference power [kW]        rated voltage [V]       utilization 
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Consumer of the tertiary sector 

reference power  [kW]      rated voltage [V]             utilization 
  15       400       medium   
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Load patterns 
� Residential users: 

•  Load pattern with significant portion of base power due to the 
diversity among the aggregation of similar loads (e.g., refrigerators) 
although each of them has cycling (intermittent) operation 

•  higher consumption during the day (with concentration of the 
activities) and lower (but non-zero) at night 

� Industrial users: 
•  typical patterns with two peaks due to the working activity in the 

morning and in the afternoon and to the lunch pause 
•  energy request reduced during the night 

� Tertiary users: 
•  medium-small users (e.g., small commercial activities and offices): 

load profile similar to the industrial one 
•  large users (e.g., shopping malls and large offices): single peak 

during the day due to continuing working period, and non-negligible 
demand at night, with services in continuous operation (e.g., 
refrigerators and lighting) 
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Load profiles 
� After the introduction of the competitive electricity market, the energy suppliers 

may new degrees of freedom to formulate new tariff structures  

� The knowledge of the electrical load evolution is essential for the definition of the 
time-variable tariffs 

� From detailed analysis carried out on specific load categories, the load patterns 
representative of load aggregations (load profiles) are extracted 

� The load profiles are normalized with respect to the peak of the load pattern, to 
facilitate their use with different load aggregations 

� The load profiles are used to forecast the evolution of the consumption at the HV/
MV or MV/LV substation level 

� This information allow for identifying criticality and periodicity (weekly, monthly or 
seasonal) of the consumption oscillations 
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Normalized load profiles 
   R = residential   A = high utilization  
   I = industrial   M = medium utilization 
   T = tertiary   B = low utilization 
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HV/MV substation 
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HV/MV substation 

Potenza attiva utenze stazione AT/MT
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§  Which types of loads form the overall demand of the HV/MV substation? 

? 
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HV/MV substation 

Fattore di potenza per stazione AT/MT
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CUSTOMER  
 

GROUPING 
 
 

(load pattern shape-based grouping, 
clustering techniques) 
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Customer grouping 
n  Within a given macro-category (e.g., industrial, commercial, …), there is 

a great diversity among the load patterns of the customers belonging to 
the same type of activity or associated to the same commercial code 

n  Customer partitioning based on the type of activity and on commercial 
codes are not efficient for representing the specific aspects of the 
electricity consumption 

n  A categorization based on the shape of the load patterns is much more 
useful for different purposes: 
q  Group customers with similar electrical behaviour 

q  Identify similar behaviour in different time periods 

q  Formulate tariff options dedicated to each group 

q  Study the possible interactions among different energy sources 
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G.Chicco, R.Napoli, P.Postolache, M.Scutariu and C.Toader, Customer Characterization Options for Improving the Tariff Offer, IEEE 
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Load patterns for clustering 
n  Clustering techniques are used to form the customer groups 
n  Data are taken from the same loading conditions, that is, comparable 

periods in terms of type of day (weekday/weekend) and season 

n  Typical patterns are built (after detecting and eliminating bad data) by 
averaging the load data monitored during a period of observation  

n  Example from data gathered in one month (May): 
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Representative load pattern 
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n  The typical daily load pattern is then represented by using normalized 
values, in the vector p(i) for customer i=1,…,N  

n  Two types of representations can be considered, leading to different 
values for the reference power used for normalization: 
q  the rated power (e.g.: Pref = 

Prated = 80 kW) 

q  the maximum point of the 
pattern (Pref = 54.86 kW), 
using a representative load 
pattern (RLP), dividing each 
point of the pattern by the 
reference power (all RLP 
values belong to [0,1]) 
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Load pattern categorisation 
n  Each customer is represented by its RLP 
n  The set of RLPs is used to define a number of customer classes 

according to a specified shape-based criterion 

n  The formation of the customer classes is assisted by the use of suitable 
clustering techniques (many techniques are available and can be 
compared through appropriate validity indices) 

n  The result of the clustering process is the aggregation of load patterns 
having similar characteristics 

n  The customer classes are then obtained by recognizing the properties of 
the customers with RLPs in the same cluster 

n  Each customer class is then represented by its characteristic pattern 
called load profile 
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G. Chicco, Overview and performance assessment of the clustering methods for electrical load pattern grouping, Energy, Vol. 42, No. 1, June 
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Load pattern data example 
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Dataset with 234 non-residential RLPs 
The red line represents the overall average (or pooled scatter) 
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Clustering results 
n  Clustering groups the customers according with the load pattern shape 
n  Example with modified follow the leader clustering 
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Fig. 3. Performance of the clustering validity indicators with the clustering techniques under test for to 100.

during the analysis in order to obtain the same numbers of
clusters imposed to the other algorithms.

Some indications on the “best” number of clusters from the
classification point of view may be obtained from the clustering
validity indicators shaped as decreasing functions of the number
of customer classes, such as the CDI or the SI. In this case,
the best number of clusters could correspond to the knee of the
curve [27]. A more theoretical approach could be applied by
considering the Bayesian information criterion (BIC) [28] or the
informational complexity criterion (ICOMP) [29]. From Fig. 3,
adopting a criterion based on the knee of the curve would result
in a relatively high number of clusters (e.g, about 40). However,
for our purposes, the choice of the number of customer classes
mainly depends on practical aspects, as the willingness of the
distribution service provider to create a specific set of tariffs,
each of which is then associated to a customer class. As such, the
number of customer classes for tariff diversification purposes
cannot be too high, in order to allow for easy management of the
commercial data and to provide a clear and nonoverwhelming
amount of information to the customers concerning the tariff
options.

A. Clustering Validity Assessment

Repeated executions of the clustering algorithms have been
performed by varying the number of customer classes from 5 to
100 and computing the clustering validity indicators for all algo-
rithms. This range of analysis has been chosen for the purpose
of comparing the methods, even though 100 classes correspond
nearly to one half of the total customers and are a number prac-
tically too high for a real application aimed at associating each
customer class to a different tariff.

The results illustrated in Fig. 3 show that the information pro-
vided by the clustering validity indicators is highly consistent,
with a clustering technique ranking (for increased values of the
indicator with the same number of customer classes) nearly sim-
ilar for the same number of customer classes. All of the methods
are able to form the required number of clusters. The only ex-
ception is the SOM, for which the cluster formation requires
post-processing of the map components under a given crite-
rion, making it difficult to choose the cluster elements when the
number of clusters is relatively high, and the smoothing effects
during the creation of the map lead to uncertainties in the map

Fig. 4. Clustering results for the hierarchical clustering (with average linkage
criterion) with clusters.

Fig. 5. Pareto diagram for the PCA application.

elements of the same order of magnitude of the differences be-
tween the cluster components. In fact, if an automated procedure
is employed (clustering first the map prototype vectors and then

G.Chicco, R.Napoli and F.Piglione, Comparison among Clustering Techniques for Electricity Customer Classification, IEEE Transactions on 
Power Systems, Volume 21, No.2, May 2006, pp.933–940  

uncommon 
patterns are 
identified as 
outliers 



AGGREGATION OF LOADS 
 

WITH  
 

THERMOSTATIC CONTROL 
 

(load diversity,  
cold load pickup,  
energy payback) 
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Temperature range for thermostat control 
n  Heating load (for cooling load the temperature is reverted) 

θSET 
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Δθ 
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time 

relative temperature 
 (w.r.t. ambient temperature)  

θ∞ 

0 

asymptotic value  

TON TOFF 

period T 

duty-cycle δ = TON/T 
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Static characteristic of a single load 
controlled by a thermostat 

n Details on continuous operation (CO) branch and intermittent 
operation (IO) branch 
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Dynamic model 
n  A single thermostat-controlled load responds to a voltage 

variation by establishing a new operating cycle of different 
duration 

 
 

  

Final point with cycling operation Final point with continuous operation 
for θ∞<=θOFF for θ∞> θOFF 
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Aggregation of thermostat-controlled loads 
n  The model of the single load is not sufficient to represent the 

behavior of an aggregation of thermostat-controlled loads 
n  Load diversity (shifting in time of the cycling operation due to lack 

of synchronism among the loads) and structural differences 
between the loads have to be considered by using probabilistic 
analysis techniques  

n  Cold Load Pickup: after a long interruption, when power is 
restored, many of the automatically controlled appliances will 
demand power simultaneously, resulting in a temporary loss of 
diversity and possible overload of the connecting lines 

n  Energy Payback: in the load recovery after a voltage interruption, 
an extra amount of energy is required to bring all the loads to a 
temperature inside the range for thermostat control 
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Aggregation of thermostat-controlled loads 
n  Load diversity is addressed by considering a time reference 

instant and choosing at random the position of the duty-cycle of 
each load 

n  A limit case is considered with N identical loads with uniformly 
distributed cycles over the period T 

n  Other cases are defined with variations of the parameters chosen 
inside given ranges, for: 
q  temperature setpoint and deadband 
q  rated power 

q  thermal time constant  

q  difference between the asymptotic temperature and the ambient 
temperature 
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N structurally equal loads with the same 
total mean power (0.5 p.u.) 
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Aggregated load recovery after a step 
voltage variation 

  V0 = 1 p.u., voltage variation ΔV = -10%,  
                         ,                            ,                            , 
     limit case and simulation with 10,000 different loads  
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Cold Load Pickup (CLP) 
n  The results of the analysis of a 

supply interruption for N = 100 
loads is shown in the first graph  

n  The load is increasing due to 
the Cold Load Pickup after the 
supply restoration  

n  This may cause long-term 
overload in the distribution 
system conductors 

n  The tempera tu re o f t he 
aggregated load drops below 
t he t he rmos ta t ON l im i t       
during the supply interruption   

Example of thermostat-controlled load 
dynamics with Cold Load Pickup (aggregate 
load and temperature for a single load) 
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Example with aggregation of different loads 
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§  Cold load pickup of 10,000 loads with random parameters after 

an interruption of duration Δt = 8 min 

   LIMIT CASE 
  “SMALL” PARAMETER VARIATIONS 
  “LARGE” PARAMETER VARIATIONS 
 ΔP=50%P0, Δθ∞=10%θ∞0, Δ(Δθ)=50%Δθ0,  

ΔθSET=20%θSET0, Δτ=50%τ0  

ΔP=50%P0, Δθ∞=10%θ∞0, Δ(Δθ)=25%Δθ0,  
ΔθSET=10%θSET0, Δτ=25%τ0  

time (min) 
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(peak shaving and net metering modes, 
net energy output, 

data averaging impact) 
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q  Peak shaving 

§  the DG unit is always connected to the external network 

§  the local generation never exceeds the local load 

§  the power flow from the external network to the local load is always 
unidirectional 

Modes of operation with local generation 

∼ external 
network 

local 
load 

DG unit 

unidirectional power flow time 

power 

local load 

local generation 
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q  Net metering 
§  the DG unit is always connected to the external network 
§  the local generation may exceed the local load 
§  the power flow may be in both directions (from and to the local 

system) 

§  separate metering of the energy flows in the two directions is required 
for enabling the adoption of time-dependent energy tariffs 

Modes of operation with local generation 

∼ external 
network 

local 
load 

DG unit 

bi-directional power flow time 

power 

local load 

local generation 

to the 
network 
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The “duck chart” 
n  Progressive growth of local generation impacts the evolution in time of 

the net load, changing the traditional view of the demand side 

n  The “duck chart” refers to data from California 
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The !rst ramp of 8,000 MW in the upward direction (duck’s tail) occurs in the morning starting around 
4:00 a.m. as people get up and go about their daily routine. The second, in the downward direction, 
occurs after the sun comes up around 7:00 a.m. when on-line conventional generation is replaced by 
supply from solar generation resources (producing the belly of the duck). As the sun sets starting around 
4:00 p.m., and solar generation ends, the ISO must dispatch resources that can meet the third and most 
signi!cant daily ramp (the arch of the duck’s neck). Immediately following this steep 11,000 MW ramp 
up, as demand on the system deceases into the evening hours, the ISO must reduce or shut down that 
generation to meet the !nal downward ramp.

Flexible resources needed
To ensure reliability under changing grid conditions, the ISO needs resources with ramping "exibility  
and the ability to start and stop multiple times per day. To ensure supply and demand match at all times, 
controllable resources will need the "exibility to change output levels and start and stop as dictated by 
real-time grid conditions. Grid ramping conditions will vary through the year. The net load curve or duck 
chart in Figure 2 illustrates the steepening ramps expected during the spring. The duck chart shows the 
system requirement to supply an additional 13,000 MW, all within approximately three hours, to replace 
the electricity lost by solar power as the sun sets.

Oversupply mitigation
Oversupply is when all anticipated 
generation, including renewables,  
exceeds the real-time demand.  
The potential for this increases  
as more renewable energy is  
added to the grid but demand  
for electricity does not increase.  
This is a concern because if the  
market cannot automatically  
manage oversupply it can lead 
to overgeneration, which requires 
manual intervention of the market  
to maintain reliability. During  
oversupply times, wholesale prices  
can be very low and even go  
negative in which generators have 
to pay utilities to take the energy. But  
the market often remedies the oversupply situation and automatically works to restore the balance  
between supply and demand. In almost all cases, oversupply is a manageable condition but it is not 
a sustainable condition over time — and this drives the need for proactive policies and actions to  
avoid the situation. The duck curve in Figure 2 shows that oversupply is expected to occur during  
the middle of the day as well.

Because the ISO must continuously balance supply and demand, steps must be taken to 
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Figure 2: The duck curve shows steep ramping needs and overgeneration risk
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A net output energy example 
§  An example is shown here on a real system with an aggregate 

load composed of residential consumers and general building 
services (sum of rated powers about 150 kW), and a 25 kWp 
photovoltaic (PV) plant 

§  Average power data have been gathered each 5 min in a mid-
May day, from hour 7 am to hour 8 pm 

§  In the time period of analysis, the load consumes 161.3 kWh, 
and the PV system produces 94.7 kWh  

§  Globally, the equivalent production and consumption system 
consumes 66.6 kWh (net energy) 
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Equivalent system and net output 
§  The system generates or absorbs power at different times  

§  The positive net 
power output changes 
for increasing 
averaging time steps, 
due to reduction in the 
detail of 
representation of the 
information 

The positive net power 
output segments around 
3:30 pm disappear when the 
averaging time increases 
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Effects of different averaging time steps 
§  The set of data gathered has been used to create reduced data 

sets at different averaging times (multiples of 5 min) storing the 
data on daily energy produced and consumed 

0 

2 

4 

6 

8 

10 

12 

5 10 15 20 30 60 

po
si

tiv
e 

ou
tp

ut
 e

ne
rg

y 
(k

W
h)

 

averaging time (min) 

Understanding the energy consumption patterns © Copyright Gianfranco Chicco, 2016 



Hints on the averaging time step 
§  The effectiveness of net power analysis is conditioned by the 

data set with the lowest averaging time step 

§  When the difference between positive and negative net power 

values is of interest (e.g., due to different economic treatment), 

similar (and possibly high) averaging time steps should be used 

for gathering production and consumption data 

§  Improving the averaging time step only for one of the two types 

of data could look ineffective 
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Parametric analysis on averaging time step 
§  Analysis for a grid-connected local system containing PV 

generation and load 

§  Generation PV plant with rated power 7.5 kWp and data 
gathered at irregular time intervals and processed to get a 5-min 
averaging time step pattern 

§  Load composed of 10 residential flats, with reference power 30 
kW (sum of the contract power values), gathered with regular 
time step 1-min and processed to get a 5-min averaging time 
step pattern 

G. Chicco, V. Cocina, A. Mazza and F. Spertino, “Data Pre-Processing and Representation for Energy Calculations in Net Metering Conditions”, 
Proc. IEEE Energycon 2014, Dubrovnik, Croatia, 13-16 May 2014, paper 262. 
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Load and PV patterns averaged at 5 min 
§  Example of pattern data for four successive days 

time step number 
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The individual entry is the sum of the 
positive energy differences between the 
two patterns, calculated on the basis of 
the lower averaging time step 

Parametric analysis 
§  The averaging time step differences have a visible effect on the net 

positive monthly energy 
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Thank you for  
your attention  
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